Ethical Issues in the Statistical Analysis of Clinical Research Data

Roger J. Lewis, MD, PhD
Department of Emergency Medicine
Harbor-UCLA Medical Center
Torrance, California

Introduction

• Types of data-centered scientific misconduct:
 • Data fabrication;
 • Data falsification; and
 • Data stealing.

• Not to be covered.

• Will focus on more subtle aspects of ethical statistical practice.

Introduction

• Statistical analysis is a set of quantitative methods for deriving meaningful information from imperfect and incomplete data.

• There is an ethical imperative to perform such analysis in a manner that maximizes the chance the conclusions drawn are valid and truthful.

• Even without knowing the truth with certainty, we can identify statistical practices that are more or less likely to yield truthful conclusions.

Basic ethical dilemmas:

• The analysis most likely to yield positive, exciting, and publishable results is often not the analysis most likely to yield the truth.

• The most complete reporting of analyses may not be the most convincing.

• “Statistical quality” is linked to validity and truthfulness.

• Quality statistical analysis is ethical statistical analysis.

Statistical Quality or Ethical Degree

Low Medium High
Incomplete, poor, or inaccurate planning, analysis, or reporting

Complete, well-done, and accurate planning, analysis, and reporting

Gray Zone

Incomplete, poor, or inaccurate planning, analysis, or reporting

Complete, well-done, and accurate planning, analysis, and reporting
Basic Planning

- Population
- Inclusion/exclusion
- Intention-to-treat principle
- Consecutive sample
- Sample size
- Subgroups

- Interventions
- Predictors
- Outcome(s)
 - Primary
 - Secondary
- Blinding

Planned Statistical Analyses

- Primary comparison(s)
- Multiple comparisons
- Missing data/censoring
- Multivariate modeling/stratification
- Options and exploratory analysis, if any
- Interim analyses
- Verification of assumptions

Reporting

- All patients enrolled.
- All analyses performed that might affect interpretation of results.
- Missing/censored information (all denominators).
- Any deviations/additions to original statistical analysis plan.
- Anything you would like to know if you were a reader, reviewer, or editor!

Example 1

- Prospective interventional clinical trial.
- Planned sample size of 240 patients.
- Abstract deadline approaching and current enrollment is 180 patients.
- Issues:
 - Power;
 - Stopping the trial early;
 - Interim analysis/actual intent; and
 - Reporting.

Type II Error

- Concluding that a difference does not exist, when a difference equal to that sought by the clinical trial does exist—a false negative.
- Occurs when a non-significant \(p \) value is obtained (\(p > \alpha \)), yet the two groups are different.
- The risk of a type II error, assuming there is a difference, is \(\beta \).

Power

- The chance of obtaining a statistically significant \(p \) value, if a true difference exists that is equal to that sought by the clinical trial.
- \(\text{Power} = 1 - \beta \).
- Once the study design and analysis method is defined, the power is determined by the sample size, the effect size, and by \(\alpha \).
- Stopping early will result in a lower power.
Sample Size and Ethical Issues in Clinical Trial Design

- It is unethical to enroll patients in a trial that, because of inadequate sample size, is unlikely to yield useful information.
- We will assume the original trial design was adequately powered.

Post hoc Power Analysis

- Definition: a calculation of the power or effect size of a study, based on the final sample size.
- A power calculation can only be used before a study, to determine the required sample size.
- Performing a post hoc power analysis is invalid and should never be done.
- A confidence interval can be calculated after study completion to interpret the final results.

Early Termination: Good Motivations

- The primary question has been addressed:
 - Benefit found at a planned interim analysis;
 - Unexpected harm found through safety monitoring or at a planned interim analysis.
- The primary question is no longer valid or has been answered by another trial.
- Completing the trial is not feasible or is futile.
- Ethical considerations have changed and/or risk profile found to be unacceptable.
- Summarized as “Efficacy, safety, feasibility.”

Early Termination: Bad Motivations

- Desire to make an abstract or publication deadline.
- Shift in product development focus of sponsor.
- Shift in scientific focus of sponsor or investigator.
- Desire to suppress early negative or unfavorable results.

Feasibility and Futility

- Subjects often enroll to aid efforts to answer the clinical question.
- Feasibility vs. futility:
 - Infeasible: can’t be completed;
 - Futility: will not answer the question even if completed.
- Our obligation is to complete trials and answer questions intended, unless:
 - Ethical balance changes; or
 - The trial becomes infeasible.
- We should only start trials that appear feasible.

Interim Data Analyses: Ethics

- During a clinical trial, data accumulate sequentially.
- If you were the last patient to be enrolled, wouldn't you want to know the treatments and outcomes of the prior patients?
- Interim analyses are used to see if a difference clearly exists between the two groups, so the trial can be stopped early, and future patients can receive the best treatment.
- In other words, to stop the trial as soon as a reliable conclusion can be drawn from the available data.
Type I Error

- Concluding that a difference exists when it does not.
- A false positive.
- Occurs when a statistically significant p value ($p < \alpha$) is obtained when the two groups are not different.
- The risk of a type I error, assuming there is no underlying difference, is α.

Multiple Comparisons

- When two identical groups of patients are compared, there is a chance (α) that a statistically significant p value will be obtained (type I error).
- When multiple comparisons are performed, the risk of one or more false-positive p values is increased.
- Multiple comparisons include the comparison of two groups at multiple time points.

Controlling Type I Error Risk

- Interim data analyses are generally conducted at a few predetermined points throughout the trial to determine if the trial should be stopped because of demonstrated benefit or harm.
- The nominal α (maximum significant p value) at each analysis are reduced so that the overall risk of a false positive result, if no treatment effect, is 0.05.

Controlling Type I Error Risk

- Interim analyses must be planned in advance, including the amount of type I error risk to be taken at each analysis.

Group Sequential Trial with Three Interim Analysis and a Final Analysis

<table>
<thead>
<tr>
<th>Begin Enrollment</th>
<th>First Interim Analysis</th>
<th>Second Interim Analysis</th>
<th>Third Interim Analysis</th>
<th>Final Analysis</th>
<th>Maximum Sample Size Attained</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α_1</td>
<td>α_2</td>
<td>α_3</td>
<td>α_4</td>
<td></td>
</tr>
</tbody>
</table>

Nominal α Levels

- α values (the maximum significant p value) for each interim analysis are adjusted downward, so that the true type I error rate for the entire study is 0.05.
Determinants of Efficacy

The effectiveness or efficacy of a therapy is determined by:

- One’s ability to administer the therapy to the patient or to get the patient to take the medication (i.e., “compliance”);
- Inherent or “chemical efficacy;”
- Patient characteristics captured in inclusion and exclusion criteria; and
- Other patient characteristics that you may not be able to anticipate, measure, or control.

Compliance, Prognosis, and Bias

- Compliant and noncompliant patients often differ in many characteristics, including prognosis.
- Even in a randomized, double-blind study compliance is rarely equal in the different treatment groups.
- This can potentially introduce bias, in that the non-compliant, poor-prognosis (or good-prognosis) subgroup will tend to leave one treatment more than the other.

Purpose of a Clinical Trial

- To generate data that will influence physician selection of effective therapy and improve patient outcome.

Example 2

- Prospective, randomized clinical trial with a generally negative result.
- Some enrolled patients are found to never have taken their prescribed study medication.
- After completion, some patients are also found to have met prospectively-defined exclusion criteria.
- Issues:
 - Purpose of clinical research;
 - Inclusion/exclusion and ITT principle; and
 - Reporting.

Question

- What would the \(p \) value obtained after 180 patients be compared to?
 - 0.05
 - 0.0052
 - Whatever the investigator needs to use to claim a statistically significant result

Table: Max No. Groups, Analysis, \(\alpha_i \), \(\alpha_f \)

<table>
<thead>
<tr>
<th>Groups</th>
<th>Analysis</th>
<th>(\alpha_i)</th>
<th>(\alpha_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Interim 1</td>
<td>.0294</td>
<td>.052</td>
</tr>
<tr>
<td></td>
<td>Final</td>
<td>.0294</td>
<td>.0480</td>
</tr>
<tr>
<td>3</td>
<td>Interim 1</td>
<td>.0221</td>
<td>.0005</td>
</tr>
<tr>
<td></td>
<td>Interim 2</td>
<td>.0221</td>
<td>.0141</td>
</tr>
<tr>
<td></td>
<td>Final</td>
<td>.0221</td>
<td>.0451</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{ > 0.05</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Interim 1</td>
<td>.0182</td>
<td>5E-5</td>
</tr>
<tr>
<td></td>
<td>Interim 2</td>
<td>.0182</td>
<td>.0042</td>
</tr>
<tr>
<td></td>
<td>Interim 3</td>
<td>.0182</td>
<td>.0194</td>
</tr>
<tr>
<td></td>
<td>Final</td>
<td>.0182</td>
<td>.0430</td>
</tr>
</tbody>
</table>
Intention-to-Treat Analysis:
Definition
• Patients are considered to be members of the treatment group to which they are originally assigned, regardless of whether or not they receive that therapy.
• In other words, patients are members of treatment groups according to the treatment they were intended to receive.

Analysis by Treatment Received:
Definition
• Patients are considered to be members of treatment groups based on what treatment they actually received.
• Thus a patient assigned to an active drug treatment, who freely admits to never taking any tablets, would be considered a member of the control group.

Don’t do this!

Intention-to-Treat Analysis:
Motivation
• The effectiveness of a therapy in clinical practice is determined both by “biologic” activity and by patient compliance.
• To estimate the effectiveness of a treatment in clinical practice, one must allow for differences in compliance.
• This is the purpose of the intention-to-treat principle.

Protocol Violations
• What about the patients that met exclusion criteria and shouldn’t have been enrolled?
• In general, the primary analysis plan should anticipate such patients and define whether they are included.
• A secondary analysis should be conducted the “other” way (included or excluded) to ensure no qualitative difference.
• When in doubt, include all patients in the primary analysis.

Example 3
• Prospective clinical trial with generally negative result.
• “Exploratory” analyses show statistically significant difference in a clinically-important subgroup.
• Issues:
 • Avoiding this scenario
 • Data torturing/data dredging
 • Reporting
 • Interpretation

Subgroups
• Subgroups that are likely to be clinically important, or respond to treatment differently, should be defined prospectively in the protocol.
• Such subgroups should almost always be defined in terms of characteristics that are available at presentation.
Data Dredging or Torturing

- Definition: making a large number of overt or covert statistical comparisons, without the guidance of previously defined, enumerated, and specific hypotheses.
- “Seeing what looks promising.”
- “Exploratory data analysis.”
- Common before an abstract deadline?
- *Post hoc* subgroups usually equals data dredging.

Multiple Comparisons:
Risk of ≥ 1 False Positive

<table>
<thead>
<tr>
<th>Number of Comparisons</th>
<th>Probability of at Least One Type I Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>2</td>
<td>0.10</td>
</tr>
<tr>
<td>3</td>
<td>0.14</td>
</tr>
<tr>
<td>4</td>
<td>0.19</td>
</tr>
<tr>
<td>5</td>
<td>0.23</td>
</tr>
<tr>
<td>10</td>
<td>0.40</td>
</tr>
<tr>
<td>20</td>
<td>0.64</td>
</tr>
<tr>
<td>30</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Assumes $\alpha = 0.05$, uncorrelated comparisons

Multiple Comparisons: Bonferroni Correction

- A method for reducing the overall risk of a type I error when making multiple comparisons.
- The overall (study-wise) type I error risk desired (e.g., 0.05) is divided by the number of tests, and this new value is used as the α for each individual test.
- Controls the type I error risk, but reduces the power (increased type II error risk).

Subgroup Analysis: Motivation

- Patient populations are heterogeneous, composed of subgroups.
- This is especially true for populations of emergency department patients.
- A treatment effect detected in the entire population may or may not exist for a particular subgroup.
- Data from subgroups are often clinically important and analyzed separately.

Subgroup Analysis: Problems

- Analysis of multiple subgroups requires the use of multiple comparisons, increasing the overall risk of a type I error.
- Since each subgroup is smaller than the whole study population, the power of subgroup comparisons is smaller, increasing the risk of type II error.
- These problems occur even if the subgroups were defined prior to data collection.

Subgroup Interpretation

- Interpretation of results from subgroups should always be conservative and tentative, especially if the effect was unexpected or differs in direction between subgroups.
Example 4

• Observational study of outcome in patients with hypotension after penetrating trauma treated with new resuscitation algorithm.
• Many prehospital and ED clinical characteristics and other treatments collected as potential predictors of outcome.
• Univariate analysis shows strong association between resuscitation algorithm (and many other predictors) and outcome.

Example 4 (Continued)

• Planned multivariate analysis shows marginal association between algorithm and outcome.
• Post hoc multivariate analysis, with additional predictors, shows no association.
• Issues:
 • What is the primary result?
 • What has to be reported?
 • What should be reported?
 • Interpretation

Adjusting for Covariates

• The primary result is the result of the analysis defined in the protocol as the primary endpoint analysis.
• No clear rule on what analyses, other than the planned ones, must be reported.
• All probably should be reported.
• Ask yourself “what would you want to know?”
• Interpretation is a matter of judgment.

Example 4 (Continued)

• Five cases of ARDS requiring mechanical ventilation were observed in patients treated using the algorithm, while none were seen in the control patients.
• ARDS was not a planned outcome to be measured or reported.
• Issues:
 • What should be reported?
 • Interpretation

Goals of Safety Monitoring

• Detection of intervention-associated AEs against background rates in the population.
• Identification of unanticipated intervention-associated AEs.
• Identification of subgroups at increased risk of AEs.
• Verification that expected AEs are not occurring more often than expected.

Adverse Events

• Adverse event (AE): “Any untoward medical occurrence in a … subject administered a pharmaceutical product and which does not necessarily have to have a causal relationship with this treatment.” (ICH Guideline E2A)
• An adverse drug reaction (ADR) is an AE that occurs after the patient is given a drug (ICH E2A and 21 CFR§312.32).
• An adverse device effect is an AE in a device trial (21 CFR§812.3).
Serious Adverse Event (SAE)

- An AE that results in any of the following:
 - Death;
 - A life-threatening adverse drug reaction;
 - Inpatient hospitalization or prolongation of existing hospitalization;
 - Persistent or significant disability/incapacity;
 - Congenital anomaly/birth defect.
 (ICH E2A and 21 CFR§312.32)
- Other “important medical events” may also be SAEs, based on medical judgment.

Reporting

- SAEs generally require expedited reporting to the IRB, sponsor, and/or monitor.
- AEs are generally tabulated and reported to the IRB or other bodies at the time of interim analysis and/or at the end of the study.
- Why isn’t this information routinely put in manuscripts?